
莫润伟
E-mail: rwmo@ecust.edu.cn
职位:特聘教授、博士生导师
地址:上海市徐汇区梅陇路130号
研究生招生专业:080700 动力工程及工程热物理 085800 能源动力
0807Z1 储能科学与工程 085807 清洁能源技术
个人简介:
2015年于哈尔滨工业大学获得工学博士学位,2015-2020年先后在新加坡科技设计大学、美国加州大学洛杉矶分校从事科学研究工作,并于2020年回国任职于beat365官方网站。当选英国材料、矿物与采矿学会会士(FIMMM)、英国皇家航空学会会士(FRAeS)、国际先进材料学会会士(FIAAM),先后入选第十批上海市海外高层次人才计划(长期创新)、上海市浦江人才计划(A类)、能源与环境青年人才计划(储能技术)。主持/承担了国家科技部重点研发计划项目、美国能源部ARPA-E项目、新加坡政府MOE项目、上海市基础研究特区项目以及上海市海外高层次人才引进项目等十余项。至今主编英文专著1部、参编英文专著9部(章)以及在 Nat. Commun (4),Adv. Mater,Adv. Energy Mater,ACS Nano (2),Nano Lett (2),ACS Mater. Lett,Adv. Funct. Mater (3),Adv. Fiber Mater,J Mater Sci Technol,Energy Storage Mater (3),Energy Environ Mater等国际权威期刊上发表学术论文70余篇,授权/申请专利20余项,参编团体标准1项,相关成果被Science、Phys.org、Materials View、Advances In Engineering等国际著名科学媒体和科技机构作为亮点报道,入选美国能源部锂离子电池三十年代表性工作专刊,并担任Nat. Commum,Adv. Energy Mater,ACS Nano,Adv. Funct. Mater等期刊独立审稿人。受邀担任Vin Future全球科技奖提名专家、国际先进材料学会理事会成员、新质力材料发展联盟常务理事、中国能源学会专家委员会新能源专家组委员、全国材料与器件科学家智库能源材料与器件专家委员会委员、美国Sigma Xi科学研究荣誉学会正式成员、“World Electrical Engineering Awards”奖评审委员会成员。并担任《eScience》、《EcoMat》、《Nano-Micro Letters》、《Material Futures》等多个期刊编委/青年编委/专刊客座编辑。
研究方向
主要从事新能源材料与器件方面的研究工作。面向国家能源的重大战略需求,立足碳达峰、碳中和的历史机遇,瞄准电荷高效存储与输运的结构调控科学问题,长期致力于新型能源材料、先进制造技术及智能系统集成研究,发展能源材料——先进制造——器件集成——智能检测的关键技术,取得了系列创新性科研成果,并探索新能源领域的应用探索和成果转化。研究方向包括:
(1)先进储能材料与器件;
(2)固态储能与智能电池;
(3)智能传感与柔性电子设备;
(4)CO2高值转化与固碳储能。
获奖成果
研究成果:
(1)中国发明协会发明创新二等奖,2024年 (第一完成人)
(2)中国产学研合作创新奖,2023年 (第一完成人)
(3)IAAM Scientist Medal Lecture, 2023年 (国际先进材料学会杰出科学家奖)
(4)Carbon Capture Future Leader Award,2023年 (碳捕获未来领袖奖)
(5)IChemE CCST Young Inverstigator Award,2023年 (青年研究奖)
(6)能源与环境青年先锋称号奖, 2023年 (中华环境保护基金会/中国能源学会/北京能源与环境学会)
育人成果:
(1)第十七届全国大学生节能减排社会实践与科技竞赛一等奖
(2)第六届全国大学生可再生能源优秀科技作品竞赛一等奖
(3)第六届全国大学生可再生能源优秀科技作品竞赛优秀指导教师奖
(4)2025年中国国际大学生创新大赛上海赛区金奖
(5)第二届创青春中国青年碳中和创新创业大赛华东赛区优胜奖
(6)上海市优秀毕业生称号/国家奖学金多次
代表性著作
学术论文:
[1] Zhangyuan Wang, Zhipeng Su, Lei Wang, Runwei Mo*. Self-Healing Flame-Retardant Core-Shell Polymer Electrolytes via 3D Coaxial Printing for High-Saftey Lithium Metal Batteries. Nano Letters, 2025, doi.org/10.1021/acs. nanolett.5c04012.
[2] Biao Fang, Lei Wang, Zhangyuan Wang, Zhipeng Su, Feng Zou, Runwei Mo*. Self-Healing Interfacial Cross-Links Enable Supertough Solid Polymer Electrolytes with Eliminating-Dendrite Lithium Metal Battery. ACS Materials Letters, 2025, 7, 3292-3300.
[3] Ruilin Wu, Rui Wang, Shixin Liu, Menggang Wang, Runwei Mo*. Interface-Engineered Self-Healing Quasi-Solid Fiber Battery with High Energy Density and Robust Mechanical Properties. Advanced Fiber Materials, 2025, doi.org/10.1007/s42765-025-00598-7.
[4] Biao Fang, Rui Wang, Han Liang, Runwei Mo*. Self-Healing PVDF Based Polymer Electrolyte for Eliminating- Dendrite Lithium Metal Battery. Journal of Materials Science & Technology, 2025, doi: 10.1016/j.jmst.2025.05.031.
[5] Rui Wang, Ruilin Wu, Biao Fang, Han Liang, Runwei Mo*. Interface-Engineered Strategy on Carbon Nanotubes to Chemical Stabilize Graphene as a Self-Healing Fiber Electrode for Superior Capacitive Deionization. Energy & Environmental Materials, 2025, 0, e70141.
[6] Lei Wang, Zhangyuan Wang, Zhipeng Su, Biao Fang, Runwei Mo*. Interface-Engineered Stragtegy on Metal-Organic Framework to Chemical Stablize PVDF-HFP as Self-Healing High-Voltage Quasi-Solid-State Electrolyte. Small, 2025, e08318.
[7] Han Liang, Yunan Wei, Rui Wang, Biao Fang, Runwei Mo*. Hierarchical Micro-Mesoporous Si-C Anodes Reinforced by CO2-Converted Carbon Nanotubes for High-Energy Lithium-Ion Battteries. Journal of Energy Storage, 2025, 134, 118112.
[8] Rui Wang, Biao Fang, Han Liang, Runwei Mo*. Advanced Partially Holey Reduced Graphene Oxide Inks for 3D Printing Self-Healing Thick Eletrodes with Ultra-High Areal Desalination Capacity. Desalination, 2025, 118605.
[9] Yunan Wei, Leyi Li, Han Liang, Fan Zhang, Runwei Mo*. Ultrafast Fabrication of CO2-Derived Porous Micro-Sized Si-C Anodes for High-Energy Lithium-Ion Batteries. Chemical Engineering Science, 2025, 316, 122022.
[10] Rui Wang, Biao Fang, Han Liang, Chenpeng Zhao, Runwei Mo*. Partially Reduced Holey Graphene Oxide for High Performance Capacitive Deionization. Chemical Engineering Science, 2025, 301, 120765.
[11] Hailiang Miao, Jinglong Bi, Yang Gao*, Yiming Wang*, Tao Wang, Runwei Mo*, Min Qian, Mingliang Zhu, Fuzhen Xuan. A Microstructure-Enhanced Dual-Mode LC Sensor with a PSO-BP Algorithm for Precise Detection of Temperature and Pressure. Advanced Functional Materials, 2024, 2408198.
[12] Chenpeng Zhao, Rui Wang, Han Liang, Biao Fang, Ruqing Li, Ruilin Wu, Runwei Mo*. Autonomous Self-Healing Strategy for Flexible Fiber Lithium-Ion Battery with Ultra-High Mechanical Properties and Volumetric Energy Densities. Chemical Engineering Journal, 2024, 496, 154153.
[13] Chenpeng Zhao, Biao Fang, Rui Wang, Han Liang, Runwei Mo*. Structure Engineering and Heteroatom Doping-Enabled High-Energy and Fast-Charging Dual-Ion Batteries. Chemical Engineering Journal, 2024, 490, 151537.
[14] Wenlong Chen, Yuting Chen, Runwei Mo*, Jiannong Wang*. High-Efficiency Thermal Reduction of CO2 to High-Valued Carbon Nanotubes. Chemical Engineering Science, 2024, 295, 120179.
[15] Zheng Bo, Zhouwei Zheng, Yanzhong Huang, Pengpeng Chen, Jianhua Yan, Kefa Cen, Runwei Mo*, Huachao Yang*, Kostya (Ken) Ostrikov, Covalently Bonded MXene@Antimonene Heterostructure Anode for Fast Lithium-Ion Storage. Chemical Engineering Journal, 2024, 485, 149837.
[16] Xinyi Tan, Runwei Mo*, Jinhui Xu, Xinru Li, Qingyang Yin, Li Shen*, Yufeng Lu*. High Performance Sodium Ion Anodes based on Sn4P3 Encapsulated within Amphiphilic Graphene Tubes. Advanced Energy Materials, 2022, 12, 2102345.
[17] Fan Li, Ran Tao, Xinyi Tan, Jinhui Xu, Dejia Kong, Li Shen*, Runwei Mo*, Jinlai Li, Yunfeng Lu*, Graphite-Embedded Lithium Iron Phosphate for High-Power-Energy Cathodes. Nano Letters, 2021, 21, 2572.
[18] Ran Tao, Fan Li, Xing Lu, Fang Liu, Jinhui Xu, Dejia Kong, Chen Zhang, Xinyi Tan, Shengxiang Ma, Wenyue Shi, Runwei Mo*, Yunfeng Lu*. High-Conductivity-Dispersibility Graphene Made by Catalytic Exfoliation of Graphite for Lithium-Ion Battery. Advanced Functional Materials, 2021, 31, 2007630.
[19] Runwei Mo*, David Rooney, Kening Sun, Jiannong Wang*. 3D Holey-Graphene Frameworks Cross-Linked with Encapsulated Mesoporous Amorphous FePO4 Nanoparticles for High Power Lithium-Ion Batteries. Chemical Engineering Journal, 2021, 417, 128475.
[20] Runwei Mo, Xinyi Tan, Fan Li, Ran Tao, Dejia Kong, Jinhui Xu, Zhiyong Wang, Bin Xu, Xiang Wang, Chongmin Wang, Jinlai Li, Yunfeng Lu*. Tin-Graphene Tubes as Anodes for Lithium-Ion Batteries with High Volumetric and Gravimetric Energy Density. Nature Communications, 2020, 11, 1374.
[21] Runwei Mo, David Rooney, Kening Sun*. Hollow Germanium Nanocrystals on Reduced Graphene Oxide for Superior Stable Lithium-Ion Half Cell and Germanium (Lithiated)-Sulfur Battery. Energy Storage Materials, 2020, 26, 414.
[22] Runwei Mo*, David Rooney, Kening Sun*. Hierarchical Graphene-Scaffolded Mesoporous Germanium Dioxide Nanostructure for High-Performance Flexible Lithium-Ion Batteries. Energy Storage Materials, 2020, 29, 198.
[23] Runwei Mo, Fan Li, Xinyi Tan, Pengcheng Xu, Ran Tao, Gurong Shen, Xing Lu, Fang Liu, Li Shen, Bin Xu, Qiangfeng Xiao, Xiang Wang, Chongmin Wang, Jinlai Li*, Ge Wang*, Yunfeng Lu*. High-Quality Mesoporous Graphene Particles as High-Energy and Fast-Charging Anodes for Lithium-Ion Batteries. Nature Communications, 2019, 10, 1474.
[24] Runwei Mo*, Zhengyu Lei, David Rooney, Kening Sun*. Anchored Monodispersed Silicon and Sulfur Nanoparticles on Graphene for High-Performance Lithiated Silicon-Sulfur Battery. Energy Storage Materials, 2019, 23, 284.
[25] Runwei Mo*, David Rooney, Kening Sun*. Three-Dimensional Double-Walled Ultrathin Graphite Tube Conductive Scaffold with Encapsulated Germanium Nanoparticles as a High-Areal-Capacity and Cycle-Stable Anode for Lithium-Ion Battery. ACS Nano, 2019, 13, 7536.
[26] Runwei Mo, David Rooney, Kening Sun*, Huiying Yang*. 3D Nitrogen-Doped Graphene Foam with Encapsulated Germanium/Nitrogen-Doped Graphene Yolk-Shell Nanoarchitecture for High-Performance Flexible Li-Ion Battery. Nature Communications, 2017, 8, 13949.
[27] Runwei Mo, Siuon Tung, Zhengyu Lei, Guangyu Zhao, Nicholas A Kotov*, Kening Sun*. Pushing the Limits: 3D Layer-by-Layer Assembled Composites for Cathodes with 160 C Discharge Rates. ACS Nano, 2015, 9, 5009.
[28] Runwei Mo, Zhengyu Lei, Kening Sun*, David Rooney*. Facile Synthesis of Anatase TiO2 Quantum-Dot/Graphene-Nanosheet Composites with Enhanced Electrochemical Performance for Lithium-Ion Batteries. Advanced Materials, 2014, 26, 2084.
英文专著:
[1] “Flexible Metal-Air Batteries”, Runwei Mo, in Metal-Air Batteries: Progress and Perspective, edited by Ram Gupta (CRC Book, ISBN: 978-1-032-28208-4, 2023), Chapter 24.
[2] “Metal Phosphates/Phosphonates for fuel cells”, Runwei Mo, in Metal Phosphates and Phosphonates: Fundamental to Advanced Emerging Applications, edited by Ram K. Gupta (Springer Book, ISBN: 978-3-031-27062-8, 2023), Chapter 10.
[3] “3D Graphene for Metal–Air Batteries”, Runwei Mo, in 3D Graphene Fundamentals, Synthesis, and Emerging Applications, edited by Ram K. Gupta (Springer Book, ISBN 978-3-031-36248-4, 2023), Chapter 13.
[4] “Hydrogels for Flexible/Wearable Batteries”, Runwei Mo, in Hydrogels: Fundamentals to Advanced Energy Applications, edited by Anuj Kumar and Ram K. Gupta, (CRC Book, ISBN: 978-1-003-35156-6, 2023), Chapter 13.
[5] “Application of Silicon-Based Composite in Batteries”, Runwei Mo, in Silicon-Based Hybrid Nanoparticles: Fundamentals, Properties, and Appications, edited by Sabu Thomas, Mazaher Ahmadi, Tuan Anh Nguyen, Nirav Joshi, and Ghulam Yasin (Elsevier Book, ISBN: 978-0-12-824007-6, 2022), Chapter 7.
[6] “Graphene-Sulfur Composite Cathodes”, Runwei Mo, in Lithium-Sulfur Batteries, edited by Ram Gupta, Tuan Anh Nguyen, Huaihe Song and Ghulam Yasin (Elsevier Book, ISBN: 978-0-323-91934-0, 2022), Chapter 13.
[7] “Fundamentals and Recent Advancements in Li-Ion Batteries”, Runwei Mo, in Handbook of Energy Materials, edited by Ram Gupta (Springer Book, ISBN: 978-981-16-4480-1, 2022), Chapter 19.